Secure Communications for the Two-user Broadcast Channel with Random Traffic
نویسندگان
چکیده
In this work, we study the stability region of the two-user broadcast channel (BC) with bursty data arrivals and security constraints. We consider the scenario, where one of the receivers has a secrecy constraint and its packets need to be kept secret from the other receiver. This is achieved by employing fullduplexing at the receiver with the secrecy constraint, so that it transmits a jamming signal to impede the reception of the other receiver. In this context, the stability region of the two-user BC is characterized for the general decoding case. Then, assuming two different decoding schemes the respective stability regions are derived. The effect of self-interference due to the full-duplex operation on the stability region is also investigated. The stability region of the BC with a secrecy constraint, where the receivers do not have full duplex capability can be obtained as a special case of the results derived in this paper. In addition, the paper considers the problem of maximizing the saturated throughput of the queue, whose packets does not require to be kept secret under minimum service guarantees for the other queue. The results provide new insights on the effect of the secrecy constraint on the stability region of the BC. In particular, it is shown that the stability region with secrecy constraint is sensitive to the coefficient of self-interference cancelation under certain cases.
منابع مشابه
An Incentive-Aware Lightweight Secure Data Sharing Scheme for D2D Communication in 5G Cellular Networks
Due to the explosion of smart devices, data traffic over cellular networks has seen an exponential rise in recent years. This increase in mobile data traffic has caused an immediate need for offloading traffic from operators. Device-to-Device(D2D) communication is a promising solution to boost the capacity of cellular networks and alleviate the heavy burden on backhaul links. However, dir...
متن کاملImproving security of double random phase encoding with chaos theory using fractal images
This study presents a new method based on the combination of cryptography and information hiding methods. Firstly, the image is encoded by the Double Random Phase Encoding (DRPE) technique. The real and imaginary parts of the encoded image are subsequently embedded into an enlarged normalized host image. DRPE demands two random phase mask keys to decode the decrypted image at the destination. T...
متن کاملAn efficient secure channel coding scheme based on polar codes
In this paper, we propose a new framework for joint encryption encoding scheme based on polar codes, namely efficient and secure joint secret key encryption channel coding scheme. The issue of using new coding structure, i.e. polar codes in Rao-Nam (RN) like schemes is addressed. Cryptanalysis methods show that the proposed scheme has an acceptable level of security with a relatively smaller ke...
متن کاملProvably secure and efficient identity-based key agreement protocol for independent PKGs using ECC
Key agreement protocols are essential for secure communications in open and distributed environments. Recently, identity-based key agreement protocols have been increasingly researched because of the simplicity of public key management. The basic idea behind an identity-based cryptosystem is that a public key is the identity (an arbitrary string) of a user, and the corresponding private key is ...
متن کاملNew High Secure Network Steganography Method Based on Packet Length
In network steganography methods based on packet length, the length of the packets is used as a carrier for exchanging secret messages. Existing methods in this area are vulnerable against detections due to abnormal network traffic behaviors. The main goal of this paper is to propose a method which has great resistance to network traffic detections. In the first proposed method, the sender embe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.09410 شماره
صفحات -
تاریخ انتشار 2017